If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5=50
We move all terms to the left:
2x^2+5-(50)=0
We add all the numbers together, and all the variables
2x^2-45=0
a = 2; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·2·(-45)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*2}=\frac{0-6\sqrt{10}}{4} =-\frac{6\sqrt{10}}{4} =-\frac{3\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*2}=\frac{0+6\sqrt{10}}{4} =\frac{6\sqrt{10}}{4} =\frac{3\sqrt{10}}{2} $
| 5x+75=8x-9 | | 3v+v-3v=20 | | 5m-4(2m+1)=10-m | | 7-5+3x-1=6x+2 | | 36.0=x/1250 | | 5/3x+7=12 | | 7-5+3x-1=2x+8 | | 2^x-11=-23 | | 11p+3p-10p+4p=16 | | 123x-13=848 | | F(0)=-3x^2-11x+4 | | 9(t+2)=3(t-2)=6 | | -3x-6=7 | | 4(x+7)+7x=17 | | 33=4(5b-8) | | 11x+x+3x+3x+2x=20 | | 2x+12=8x+39 | | 3(2y+3)=6y+2 | | -5=13y-4 | | 25(12y+5)−45=12y−1+1/10y | | 30z-7z=3 | | n/4=12/8 | | 7x+4x-9x=12 | | 7x-4(x+8)=6x+40 | | 3/8m=3/2 | | 6z-1.4=3 | | 63=8w+2.6=3.6 | | 2x-111=x+9 | | 6z−75z=3 | | 4(2-x)+14=3(x+3) | | 3x+4=2.66 | | 4x2+3x+33=0 |